

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SENSOR FUSION FOR BOOST PHASE
INTERCEPTION OF BALLISTIC MISSILES

by

I. Gokhan Humali

September 2004

 Thesis Co-Advisor: Phillip E. Pace
 Thesis Co-Advisor: Murali Tummala

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Sensor Fusion for Boost Phase Interception of
Ballistic Missiles

6. AUTHOR(S) Ismail Gokhan Humali

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Missile Defense Agency

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In the boost phase interception of ballistic missiles, determining the exact position of a ballistic missile has a

significant importance. Several sensors are used to detect and track the missile. These sensors differ from each other in many
different aspects. The outputs of radars give range, elevation and azimuth information of the target while space based infrared
sensors give elevation and azimuth information. These outputs have to be combined (fused) achieve better position information
for the missile. The architecture that is used in this thesis is decision level fusion architecture. This thesis examines four
algorithms to fuse the results of radar sensors and space based infrared sensors. An averaging technique, a weighted averaging
technique, a Kalman filtering approach and a Bayesian technique are compared. The ballistic missile boost phase segment and
the sensors are modeled in MATLAB. The missile vector and dynamics are based upon Newton’s laws and the simulation uses
an earth-centered coordinate system. The Bayesian algorithm has the best performance resulting in a rms missile position error
of less than 20 m.

15. NUMBER OF
PAGES

91

14. SUBJECT TERMS Ballistic Missile Defense System, Boost Phase Interception, Sensor Fusion,
Radar design, IR satellites

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SENSOR FUSION FOR BOOST PHASE INTERCEPTION OF BALLISTIC
MISSILES

I. Gokhan Humali

1st Lieutenant, Turkish Air Force
B.Eng, Turkish Air Force Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: Ismail Gokhan Humali

Approved by: Phillip E. Pace

Co-Advisor

Murali Tummala
Co-Advisor

Dan Boger
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In the boost phase interception of ballistic missiles, determining the exact position

of a ballistic missile has a significant importance. Several sensors are used to detect and

track the missile. These sensors differ from each other in many different aspects. The

outputs of radars give range, elevation and azimuth information of the target while space

based infrared sensors give elevation and azimuth information. These outputs have to be

combined (fused) achieve better position information for the missile. The architecture

that is used in this thesis is decision level fusion architecture. This thesis examines four

algorithms to fuse the results of radar sensors and space based infrared sensors. An

averaging technique, a weighted averaging technique, a Kalman filtering approach and a

Bayesian technique are compared. The ballistic missile boost phase segment and the

sensors are modeled in MATLAB. The missile vector and dynamics are based upon

Newton’s laws and the simulation uses an earth-centered coordinate system. The

Bayesian algorithm has the best performance resulting in a rms missile position error of

less than 20 m.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. NATIONAL MISSILE DEFENSE...1
B. THESIS OUTLINE..2

II. SENSORS ...3
A. IR SENSORS..3

1. IR Signature of Target Missile..3
2. Infrared Sensor Design..9

B. RADAR ...14
1. Radar Equations ..14
2. Radar Parameters..17
3. Position of Radar Sensors ...17
4. Radar Results ...21

III. DATA FUSION ARCHITECTURE ..25
A. FUSION MODEL ..25
B. DATA FUSION NODE DESIGN ...26

1. Data Alignment ..26
2. Data Association...27
3. State Estimation ...27

C. PROCESSING ARCHITECTURES..27
1. Direct Fusion ..27
2. Feature Level Fusion ...28
3. Decision Level Fusion ..29

IV DECISION LEVEL FUSION ALGORITHMS ..31
A. AVERAGING TECHNIQUE ...31
B. WEIGHTED AVERAGING TECHNIQUE ...34
C. KALMAN FILTERING..37
D. BAYESIAN TECHNIQUE ...43

1 Theory ...43
2. Implementation ..44
3. Results ...45

V. CONCLUSION ..47
A. CONCLUSIONS ..47
B. RECOMMENDATIONS...47

APPENDIX MATLAB CODES..49

LIST OF REFERENCES..73

INITIAL DISTRIBUTION LIST ...75

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Spectral intensity of Titan IIIB at angle of attack of 7.4 deg (From Ref 5).......5
Figure 2. Radiant exitance of Titan IIIB (1035 K)..6
Figure 3. Atmospheric transmittance calculated using Searad..7
Figure 4. The change of the plume at the atmosphere (From Ref 5)8
Figure 5. Radiance map of Titan IIIB for MWIR at altitudes 18 km (a) and 118 km

(b) (From Ref 5)...8
Figure 6. Satellite with infrared sensor ...10
Figure 7. Intersection volume of infrared sensors...11
Figure 8. Target area seen in the detector area..12
Figure 9. Illustration of the process determining the intersection volume......................13
Figure 10. Intersection volume matrix with true target position indicated13
Figure 11. Radar cross section of the ballistic missile for four stages [From Ref 9]16
Figure 12. The possible radar positions and ballistic missile trajectories towards San

Francisco and Washington DC ..18
Figure 13. Number of times S/N exceeds the threshold (headed to SF)19
Figure 14. Number of times SNR exceeds the threshold (headed to Washington)...........20
Figure 15. Locations of launch site and radar sensors ..21
Figure 16. The rms error of RF1 (arbitrary position) ..22
Figure 17. The rms error of RF2 (arbitrary position) ..22
Figure 18. The rms error of RF1 using optimal positions ...23
Figure 19. The rms error of RF2 using optimal positions ...24
Figure 20. JDL Data Fusion Model (After Ref, 11 pg. 16-18)..25
Figure 21. Direct level fusion (After Ref 11, pg. 1-7)...28
Figure 22. Feature level fusion (After Ref 11, pg. 1-7)...29
Figure 23. Decision level fusion (After Ref 11, pg. 1-7) ..30
Figure 24. True target position, sensed positions by radars and arithmetic mean of

sensed positions of the target ...31
Figure 25. The rms error of (a) RF1 and (b) RF2..32
Figure 26. The rms error of averaging technique..33
Figure 27. True target position, sensed positions by radars and weighted averaging

position of the target ..35
Figure 28. The rms error of (a) RF1 and (b) RF2..35
Figure 29. The rms error of weighted averaging technique estimation of target

position...36
Figure 30. Kalman filtered errors for RF1: (a) range, (b) elevation and (c) azimuth........39
Figure 31. Overall position error after using Kalman filter for RF1.................................40
Figure 32. Kalman filtered errors for RF2: (a) range, (b) elevation and (c) azimuth........41
Figure 33. Overall position error after using Kalman filter for RF2.................................41
Figure 34. The rms error for weighted averaging technique after RF1 and RF2

outputs are Kalman filtered..42

 x

Figure 35. The PDFs of radars’ measurements and infrared sensors’ IFOV
intersection volume..44

Figure 36. The rms position error using Bayesian technique..45

 xi

LIST OF TABLES

Table 1. Length of the stages of Peacekeeper ballistic missile......................................16
Table 2. Radar parameters ...17
Table 3. Optimum radar positions (for launch angles to San Francisco and

Washington, DC) ...20
Table 4. Average rms error for radars and averaging technique....................................33
Table 5. Average rms error for radar sensors and weighted averaging technique.........36
Table 6. Average rms error for radar sensors and Kalman filtering43
Table 7. Average error for radar sensors and Bayesian technique.................................46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

to my father M. Yuksel…

I’d like to thank my advisors Professors Phillip E. Pace and Murali Tummala for

their support in the completion of this thesis and also Prof. Brett Michael for giving me

the opportunity to work on this exciting project.

I’d like to thank my lovely wife Aylin for her support throughout my education at

the Naval Postgraduate School.

This work was supported by the Missile Defense Agency.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. NATIONAL MISSILE DEFENSE
The national Missile Defense Act of 1999 states the policy of the United States

for deploying a National Missile Defense system capable of intercepting a limited

number of ballistic missiles armed with weapons of mass destruction, fired towards the

US [1]. The threat of an intercontinental ballistic missile attack has increased due to the

proliferation of ballistic missile technology.

The ballistic missile attack has three phases: boost, midcourse, and terminal.

Defending against the attack in each of these phases has its advantages and

disadvantages.

A boost phase defense system is designed to intercept the ballistic missile in the

first three or four minutes of the ballistic missile flight [2]. In this phase, the engine of the

ballistic missile ignites and thrusts the missile. To detect and track the ballistic missile in

the boost phase is easier due the bright and hot plume of the missile. One of the

advantages of intercepting the ballistic missile in this phase is the difficulty for it to

deploy countermeasures. The other advantage is that if the defense cannot intercept the

incoming missile in this initial phase, there is still a chance to intercept it in the other

phases. The disadvantage of boost phase interception is the time and the geographical

limitation. The defense should locate the ground based interceptor missile as close as

possible to the ballistic missile launch site due to the short engagement time.

A midcourse defense system covers the phase after the ballistic missile’s booster

burns out and ends when the missile enters the atmosphere [2]. This phase takes

approximately 20 minutes, which is the longest of the three phases. In this phase, the

ballistic missile is traveling in the vacuum of space. Any countermeasures deployed by

the missile in this phase can be extremely effective. For example, the ballistic missile can

release many lightweight decoys. The decoys expand in space where there is no drag

causing them to travel at the same speed as the actual warhead. Using some reflectors,

heaters, coolers, etc., these decoys can imitate the warhead successfully, which makes the

discrimination of the warhead extremely hard.

2

The terminal phase of the ballistic missile starts when the warhead reenters the

atmosphere. The decoys and the debris are not an issue in this phase because they will be

slowed due to the atmospheric drag, and the warhead can be identified easily. The

interception in this phase is the last opportunity for the defense. As the target of the

ballistic missile is unknown, the defense has to consider stationing many interceptors

throughout the country to cover the entire U.S.

 The interception of the ballistic missile in these phases has completely different

technical requirements. Therefore, any type of ballistic missile defense system can only

operate in its specific region. The study in this thesis is focused on the boost phase

interception.

In order to detect and track the ballistic missile more accurately in the boost

phase, different types of sensors are used with different capabilities. These sensors

provide a position estimation of the ballistic missile. Since the sensors provide the

target’s position to the interceptor, the most accurate position of the ballistic missile is

critical. The more accurate the position estimation, the higher the interception probability.

In this study, the fusion of two space based infrared sensors and two ground based radar

sensors is investigated. The purpose is to achieve better position estimation by combining

the outputs of these sensors. Four algorithms are investigated to fuse the results and

reduce the positional error of the target. These include an averaging technique, a

weighted average technique, a Kalman filter based algorithm and a Bayesian approach.

B. THESIS OUTLINE
The thesis is organized as follows. In Chapter II, the infrared and radar sensor

design issues are discussed. Chapter III describes the sensor fusion model used here as

well as the processing architectures. In Chapter IV, the four algorithms that can be used

in sensor fusion are presented, and the results are compared. Conclusions about the work

are discussed in Chapter V. Appendix A includes the MATLAB code used in this thesis.

3

II. SENSORS

There are many sensors that can be used to sense, i.e, detect and track ballistic

missiles or targets. In this study, we consider two types of sensors, namely, radar sensors

and satellite based infrared (IR) sensors. For the interception of ballistic missiles in the

boost phase, the sensors must provide complete coverage throughout the journey of the

missile. The output of the sensors must be reliable because the sensor outputs are used in

the guidance of the interceptor until the kill vehicle is launched and begins to track the

missile using its own sensors.

A. IR SENSORS

1. IR Signature of Target Missile
The important parameter used in determining the spectral bandwidth of the

infrared sensor’s detector is the rocket plume signature in the IR band. In this discussion,

we use the measurement results of a Titan III ballistic missile as an example to design the

satellite based infrared sensors.

A target’s spectral radiant intensity is a function of the temperature. In a given

direction, the spectral radiant intensity of the target is defined as the integration of the

spectral radiance (for the projected area) in that direction [3]. The spectral radiant

intensity is given by

TI L Aλ λ= -1 -1W sr µm (2-1-1)

where TA is the area of the target, and the spectral radiance Lλ is calculated as a

Lambertian source as

ML λ
λ π
= -2 -1 -1W cm sr µm (2-1-2)

where Mλ is the spectral radiant exitance (emittance) of the target.

For target temperatures above zero degrees Kelvin (0 K), the radiation is called

blackbody radiation [4] if the emissivity is one. Two simple facts are true for blackbody

4

radiation: (1) if the temperature of the body is higher, the emission of flux is higher and

(2) the flux spectral distribution shifts to shorter wavelengths when the temperature of the

target increases. The emissivity characteristic of the body, however, does not affect these

rules.

The temperature and the emissivity determine the spectral distribution and

magnitude of the target’s radiation. The radiant exitance of the target is given by

BM Mλ λ λε= (2-1-3)

where λε is the spectral (hemispherical) emissivity and BM λ is radiant exitance of a

blackbody, which can be expressed using Plank’s equation as

()2

1
5 /

1
1B c T

cM
eλ λλ

=
−

 -2 -1W m µm (2-1-4)

where

λ = wavelength, mµ

1c = 22 hcπ = 16 23.7418 10 W m−×

2c = /ch k = 21.4387 10 m K−×

T = absolute temperature, K

c = speed of light = 83 10× m/s

h = Planck’s constant = 346.626 10−× 2W s

k = Boltzmann’s constant = 231.3807 10−× -1W s K

In order to determine the radiant exitance of a given target, we first need to

determine the radiant exitance of a blackbody, which in turn requires the value of average

temperature T. The spectral radiant intensity Iλ of a Titan IIIB, at a look angle of 7.4

degrees, is shown in Figure 1 [5]. The emissivity of Titan IIIB is assumed to be λε = 0.5

[6]. The spectral radiant intensity lies mostly in the 2.5 µ m to 3.0 µ m infrared region.

5

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Wavelength ()mµ

Sp
ec

tra
l I

nt
en

si
ty

 (k
W

/s
r-

)
Sp

ec
tra

l I
nt

en
si

ty
 (k

W
/s

r-
)

60

50

40

30

20

10

0

60

50

40

30

20

10

0

Figure 1. Spectral intensity of Titan IIIB at angle of attack of 7.4 deg (From Ref 5)

In Figure 1, the maximum intensity value occurs around peakλ = 2.8 mµ . The average

temperature T of the target’s plume can then be calculated using Wien’s law as [7]:

peak

2897.8T
λ

= K (2-1-5)

where peakλ is the wavelength at which the peak value of spectral radiant intensity occurs

(in µ m). From (2-1-5), for m8.2peak µλ ≈ (see Figure 1), the target’s average

temperature can be calculated as 1035 K.

From (2-1-3) and (2-1-4) and using T = 1035 K, the radiant exitance M λ of Titan

IIIB is calculated and plotted as shown in Figure 2. By comparing the plots in Figures 1

and 2, the peak values in both cases occur at a wavelength of ~2.8 mµ as desired. If the

radiant spectral intensity shown in Figure 1 is assumed to be due to just to the rocket

plume, then by (2-1-1) the plume area can be approximated as

2.8 2.8 2

2.8 2.8

600 mm m
T

m m

I I
A

L M
λ µ λ µ

λ µ λ µ

π= =

= =

= = = (2-1-6)

6

Figure 2. Radiant exitance of Titan IIIB (1035 K)

To calculate the radiant exitance within the detector band

2 2

1 1

BM M d M d
λ λ

λ λ λ λ λ
λ λ

ε= =∫ ∫ (2-1-7)

where the limits from Figure 2 are 1 3 mλ µ= and 2 5 mλ µ= , which gives
-21.15 WcmM = . If we assume that the surface area of the plume as 600 2m [8], then the

radiation intensity of the plume is

-1 550kWsrT
P

M AI
π

= = (2-1-8)

Before choosing the detector for the infrared sensor, we need to consider the

effects of the atmosphere. The effects of the atmosphere are predominant for altitudes up

to 15 km from the surface of the Earth. Although that is a small part of the boost phase,

for early detection of the target launch, the atmospheric effects must be taken into

account.

7

The atmosphere is made up of many different gases and aerosols. Some gases in

the atmosphere are: nitrogen, oxygen, argon, neon, carbon dioxide and water vapor.

Aerosols include dirt, dust, sea salt, water droplets, and pollutants. The concentration of

these gases differs from place to place. Most of the attenuation in the 2.5 µ m to 2.9 µ m

region is caused by carbon dioxide and water vapor. Using a Searad model the

atmospheric transmittance is calculated. In this model, we used 1976 US standard

atmosphere, maritime extinction (visibility 23 km), air mass character (ICSTL) of 3, and

no clouds or rain. The atmospheric transmittance results of the Searad calculations are

shown in Figure 3. The atmospheric transmittance is not uniform for

3 m 5 mµ λ µ< < . Several absorption areas in the transmittance spectrum can be

identified.

Figure 3. Atmospheric transmittance calculated using Searad

From Figure 2, the plume energy is concentrated in the infrared region of about 2.8 mµ .

Consequently, we may choose the midwave infrared region of 3-5 mµ for designing the

8

detector. Note that the transmittance plot in Figure 3 depicts some absorption about that

wavelength.

The atmosphere not only affects the transmittance, but also affects the shape and

size of the target plume. Because of the change in pressure and the concentration of the

gases in the atmosphere, the size and shape of the plume changes with altitude. An

example of these effects is shown in Figure 4 for the plume in the afterburning stage, the

continuous flow regime, the molecular flow regime and the vacuum limit. The plume

Figure 4. The change of the plume at the atmosphere (From Ref 5)

grows bigger with increasing altitude, and it gets smaller after it goes out of the

atmosphere. The size of the plume diameter is about 10-100 meters at the beginning of

the boost phase. At an altitude of 60 km (continuous flow regime) the diameter of the

plume begins to expand, and at an altitude of 160 km (molecular flow regime) it has a

maximum diameter of 1-10 km. At 300 km, the diameter decreases to 1-10 m due to the

vacuum limit. The change in radiance is shown in Figure 5 for the Titan IIIB for altitudes

18 km and 118 km.

Scale: 320x450 mScale: 320x450 m
Scale: 4.5 x 6.0 kmScale: 4.5 x 6.0 km

(b)(a)

Scale: 320x450 mScale: 320x450 m
Scale: 4.5 x 6.0 kmScale: 4.5 x 6.0 km

Scale: 320x450 mScale: 320x450 m
Scale: 4.5 x 6.0 kmScale: 4.5 x 6.0 km

(b)(a)
Figure 5. Radiance map of Titan IIIB for MWIR at altitudes 18 km (a) and 118 km (b)

(From Ref 5)

9

2. Infrared Sensor Design

The infrared sensors are low orbit staring type focal plane arrays on satellites. The

missile is a point target for the infrared sensors because of the large distance between the

sensors and the target [2]. The detector area dA depends on the instantaneous field of

view (IFOV) of the detector
1

2
dα and the focal length 1f :

2
1fA dd α= 2m (2-1-9)

A typical side dimension for a square detector size is
1

2 30 mdA µ= . The diameter D of

the sensor optics is calculated using diffraction as

1
2

1

2.44

d

D
f

λ
α

= m (2-1-10)

Using a sensor design with focal length 1 1.5 mf = gives
1

2
dα =20 radµ , and the diameter

D = 24.4 cm.

For mixed terrain, the radiance of the background is L = 6 -1 -2300 10 Wsr cm−×

[Ref 6, pg. 210]. For
1

2
dα = 20 mµ and the satellite at CR = 1000 km above the ground, a

footprint of 20 m × 20 m square results in an area of 400 2m . The total radiation

intensity becomes -1 = 1.2 kWsrCI . Given these results, the signal-to-clutter ratio (SCR)

can be expressed as

2

2 2

22

2

4

4

P

P CT P

C C PC

C

D I
R RS ISCR

S I RID
R

π

π

 = = =

 (2-1-11)

where TS is the signal power from the target, CS is the clutter power, PI is the radiation

intensity of the plume, CI is the radiation intensity of clutter, PR is the range between IR

sensor and the plume, and CR is the range between IR sensor and the clutter.

10

At launch, the initial SCR is estimated by setting range of the plume P CR R= . We

then have

550 kW 26 dB
1.2 kW

P

C

ISCR
I

= = = (2-1-12)

The SCR is high enough throughout the boost phase that we can assume that the infrared

sensor will track the target continuously.

The most important infrared sensor parameter used in the fusion algorithm is the

IFOV. The IFOV dictates the spatial resolution of each detector. The infrared sensor, the

sensor’s field of view (FOV) and the IFOV are shown in Figure 6. The target missile’s

plume and a footprint on the Earth are shown to be within the sensor’s IFOV.

FOV

IFOV

MISSILE

FOOTPRINT

SENSOR

FOV

IFOV

PLUME

FOV

IFOV

MISSILE

FOOTPRINT

SENSOR

FOV

IFOV

PLUME

Figure 6. Satellite with infrared sensor

Infrared sensors are passive sensors. They give the azimuth and elevation

information of the target. The azimuth, elevation and range information are required to

guide the intercept missile. To derive the target range information, the intersection of

each infrared sensor’s IFOV is used. In Figure 7, the intersection area of two IFOVs is

shown.

11

INTERSECTION VOLUME
OF IFOVs
INTERSECTION VOLUME
OF IFOVs

IR Sensor #1

IR Sensor #2

INTERSECTION VOLUME
OF IFOVs
INTERSECTION VOLUME
OF IFOVs

IR Sensor #1

IR Sensor #2

Figure 7. Intersection volume of infrared sensors.

For the exact location of the satellites, the IFOV values of each sensor and the

azimuth θ and elevation ϑ angles to the target are assumed to be known. By using

triangulation and the two intersecting IFOV cones, a volume can be derived that contains

the target plume. As the target is a point source, the source area as seen by the sensor

array can be anywhere within the detector area as illustrated in Figure 8. The detector will

declare that there is a target regardless of source area’s position within the detector area.

From this, we have the knowledge of the detector element that has the target image and

the IFOV cone that contains the target. Additionally, the position of the IR satellite is

known. The IFOV and the satellite position information are sent to the fusion center and

used to find the intersection volume (as depicted in Figure 7) in order to determine the

location of the ballistic missile.

12

IFOV

Detector area

Source area

Mid line of IFOV

IFOV

Detector area

Source area

Mid line of IFOV

Figure 8. Target area seen in the detector area

In the simulation, the true vector of target-to-satellite is determined. Then angles

θ and Φ from the satellite to the target are calculated. A random uniformly distributed

error is added to the θ and Φ angles. As the target must be within the IFOV lines, we

choose the error value so that the midline of the IFOV can move up to ± IFOV / 2

radians. We repeat these steps for satellite number two. Now we have the midlines for

both satellites. The target is within the intersection volume of these two IFOV cones. This

volume is found and used in the sensor fusion algorithm to find the most probable

location of the target. To determine the intersection volume, we search the points (in one

meter increments) in the space to find which points are in both the IFOV cones to

determine the intersection volume. These points are collected with their coordinates in a

matrix. This matrix is the intersection volume matrix. Figure 9 illustrates the collection of

points to form the intersection volume. The desired target is assumed to be present in this

volume. The intersection volume matrix is shown in Figure 10.

13

Arbitrary points in space that we check if they are both in two IFOV cones

These points are only in one of the IFOV

This point is not in either IFOV cones
This point is in both IFOV’s
We put this points coordinates
to the matrix

Sat #1

Sat #2

Arbitrary points in space that we check if they are both in two IFOV cones

These points are only in one of the IFOV

This point is not in either IFOV cones
This point is in both IFOV’s
We put this points coordinates
to the matrix

Sat #1

Sat #2

Figure 9. Illustration of the process determining the intersection volume

True target position

Points defining the
intersection volume

True target position

Points defining the
intersection volume

Figure 10. Intersection volume matrix with true target position indicated

The infrared sensor’s range to the target directly affects the size of the matrix. The

volume within the IFOV cone increases with range. If we use high earth orbit satellites

(like Defense Support Program DSP satellites), for a given IFOV value (20 radµ in

our simulation), the footprint will be ~640 k 2m . In order to reduce the foot print size to

14

more reasonable values (footprint is around 400 2m in this work), we choose low earth

orbit satellites (1000 km above Earth’s surface).

B. RADAR
The forward based radar systems are operated in X-band with a low pulse

repetition frequency (PRF). The reason an X-band radar is chosen is that the high

resolution capability of this radar provides a good capability for tracking ballistic targets

in the boost phase. The resolution capability of a radar is related to the beamwidth as

given by [2]

BW
rD
λθ = (2-2-1).

where rD is the antenna diameter. The other issue that has to be addressed is the

unambiguous range uR of the radar. The range uR must be large enough to be able to

track the target throughout the boost phase, which can be up to 2,000 km (for a liquid

propellant ballistic missile).

1. Radar Equations
The radar parameters determine the accuracy of the track information being

provided to the sensor fusion. The radar single pulse signal-to-noise ratio /S N required

at the input to the receiver can be calculated as

()
2

3 4
max

/
4

T T RnP G GS N
kTBF R L

σλ
π

= (2-2-2)

where TP is the peak power of the transmitter, n is the compression factor (n = 1 if no

pulse compression is used) [6], TG and RG are the transmit and receive gains of the

antenna, σ is radar cross section of the missile target, λ is the wavelength of the radar, k

is the Boltzmann’s constant (231.38 10 J/deg−×), B is the receiver’s input bandwidth, F is

the system noise factor, and L is the total loss. In our simulation, we assume that the

15

antenna gain RG = TG . The bandwidth is B = 1/τ where τ is the pulsewidth. The

system noise temperature is 290 K and L is 1.

In the radar simulation, we add angular and range errors to the actual target

position in order to generate the radar output. The noise added is Gaussian with its

variance calculated for range and azimuth angle as

1
2 (2 /)range

i

c
k S N N

τσ =
 (2-2-3)

(2 /)
B

az el
ik S N N

ϑσ − = (2-2-4)

where c is speed of light, Bϑ is the 3-dB beamwidth of the antenna, iN is the number of

coherently integrated pulses, and k is the antenna error slope and is between 1 and 2 (for

our scenario k = 1.7 for a monopulse antenna [6]).

The radar cross section of the ballistic missile plays an important role in sensing

its position. From (2-2-2), /S N is directly proportional to the radar cross section of the

ballistic missile. In (2-2-3) and (2-2-4), the variances of the range and angular errors are

calculated using the /S N . Therefore, the radar cross section of the missile plays a

significant role in the error variance.

Figure 11 shows the radar cross section of a ballistic missile in X-band (10 GHz) for all

four stages of the missile [9]. The fourth stage is the payload. The similarity of the radar

cross section of the different stages is significant. Even as the length of the missile

decreases (jettisoning the canisters), the radar cross section of the missile does not change

appreciably. The lengths of the stages are shown in Table 1.

16

Figure 11. Radar cross section of the ballistic missile for four stages [From Ref 9]

 Length of the stage Remaining length of

the missile

Stage 1 8.175 m 21.8 m

Stage 2 5.86 m 13.625 m

Stage 3 2.3 m 7.765 m

Stage 4 5.45 m 5.45 m

Table 1. Length of the stages of Peacekeeper ballistic missile

17

2. Radar Parameters

The radar parameters used in the boost phase simulation are shown in Table 2.

The main issues that are taken into account in selecting these parameters are range and

resolution. The pulsewidth assumed is 50 sµ , and the number of pulses integrated is 20.

The beamwidth is 0.5 degrees, and the pulse repetition frequency is 150 Hz.

Band X-band

Frequency 10 GHz

Peak power (TP) 500 kW

Antenna diameter (rD) 4.15 m

Antenna efficiency (η) 0.68

Antenna gain (tr GG =) 50 dB

Noise factor (F) 4

Number of pulses integrated (iN) 20

Beamwidth (Bϑ) 0.5 degrees

Pulsewidth (τ) 50 sµ

PRF (RF) 150 Hz

Table 2. Radar parameters

3. Position of Radar Sensors

Positioning of the radar sensors play an important role in tracking the ballistic

missile target in the boost phase. During the travel of the ballistic missile, it is sensed

from many different aspects by either radar. The continuous motion and change of

aspects cause fluctuations in radar cross section of the ballistic missile. These fluctuations

in radar cross section directly affect the results of the signal-to-noise ratio and the error of

18

the radar output measurements. The Peacekeeper ballistic missile’s radar cross section for

X-band is used in our simulation [9].

Figure 12 shows all the possible positions of the radar sensors examined in the

simulation. The trajectory shown is for a target launch from North Korea to San

Francisco. The possible radar positions are indicated by hollow circles. By changing the

Trajectory to San FranciscoTrajectory to Washington DC

Possible radar locations

Trajectory to San FranciscoTrajectory to Washington DC

Possible radar locations

Figure 12. The possible radar positions and ballistic missile trajectories towards San

Francisco and Washington DC

distance between the radar and the missile launch site (400 km to 1000 km) and similarly

the angle between true north, launch site and radar position (0 degrees to 180 degrees),

we investigate the /S N for the entire boost phase flight.

For a tracking radar, it is assumed that the /S N must be greater than 6 dB [10].

For any position of the radar, the total number of times that the /S N exceeds this

threshold gives us an idea of the best position for the radar. The boost phase simulation

takes 180 s, and the sampling period is 0.1 s. This gives 1,800 data points to be examined.

The best position of the radar is the one that gives us the maximum number of detections

throughout the flight. Figure 13 shows the number of times that the /S N exceeded the

threshold as a function of the position of the radar. The best position for the radar

19

Figure 13. Number of times S/N exceeds the threshold (headed to SF)

according to Figure 13 is 0127 (the angle between true north, launch site and radar

location) and 600-1000 km from launch site. If we locate the radar position

corresponding to the peak values in this figure, the radar will track the missile closely for

the entire boost phase. Since we do not know the exact heading of the missile, we have to

examine other heading possibilities and check if the radar positions have their /S N

exceed this threshold.

In Figure 14, the number of times the /S N of the radar exceeds the threshold is

shown for a missile launched to hit Washington, DC. In Figure 14, the best position of

the radar has changed to 095 with a range of 680-880 km; that is, the launch angle

changes the best location for the radar sensors.

Using the simulation, we optimized the position of the radar systems; the best

positions of the radar systems are listed in Table 3 (for both launch angles to San

Francisco and Washington, DC). For optimization, we permutated the possible locations

of the radar sensors and checked how many times both the radar sensors’ /S N exceeds

20

Figure 14. Number of times SNR exceeds the threshold (headed to Washington)

the threshold. As a result, the positions shown in Table 3 have one or both radar

sensor’s /S N exceeding the threshold throughout the boost phase. The location of the

launch site and the radar sensors are shown in Figure 15.

 Angle between true north,

launch site and radar

Distance between launch

site and radar

RF1 21 degrees 400 km

RF2 127 degrees 670 km

Table 3. Optimum radar positions (for launch angles to San Francisco and Washington,
DC)

21

RF 2

RF 1

21

127 0

0

400 km

670 km

True North

Launch site

RF 2

RF 1

21

127 0

0

400 km

670 km

True North

RF 2

RF 1

21

127 0

0

400 km

670 km

True North

Launch site

Figure 15. Locations of launch site and radar sensors

4. Radar Results
Each radar senses the position of the ballistic missile. While sensing the position

of the ballistic missile, some errors occur. The most prevalent cause for the error is

thermal noise. These errors are injected into our simulation as Gaussian errors to azimuth,

elevation and range of the target to the radar. The variances of the Gaussian noise

components are calculated using (2-2-3) and (2-2-4). Here, the /S N changes as a

function of range to the target TR for each scenario and the radar cross section of the

ballistic missile.

For RF1 (see Table 3) the magnitude of the rms error rmse is shown in Figure 16.

The rms error is calculated as

() () ()222 ˆˆˆ zzyyxxerms −+−+−= (2-2-5)

where (x,y,z) is the true position of the ballistic missile and)ˆ,ˆ,ˆ(zyx is the radar sensor’s

measurement of the ballistic target at any given time. In Figure 16, the error that RF1

makes while sensing the ballistic target increases as the flight time increases. It is due to

the increase in range between missile and the radar and changes in the radar cross section

of the missile as seen by the radar.

22

Figure 16. The rms error of RF1 (arbitrary position)

For RF2, the rms error versus flight time plot is shown in Figure 17. The rms

Figure 17. The rms error of RF2 (arbitrary position)

23

error of RF2 differs from that in Figure 16 because of the difference in their location.

These locations are arbitrary. If we use the positions of the radar that we calculated in

Table 3, the results change significantly.

Figures 18 and 19 show the rms position error of RF1 and RF2, respectively,

when they are positioned according to Table 3. The reason for this improvement is due to

the improvement in the radar /S N because of their optimal positions.

Figure 18. The rms error of RF1 using optimal positions

In this chapter, we examined the infrared and radar sensor specifications of the

ballistic missile. The radiant exitance and the radar cross section of the ballistic missile

are investigated. Using these target specifications, the design parameters for the infrared

sensors and radar sensors are established. The positioning of the radar sensors is

examined, and an optimal positioning has been achieved. The infrared and radar sensors’

results are presented.

In the next chapter, we discuss the data fusion architectures used to combine the

radar and IR sensor outputs.

24

Figure 19. The rms error of RF2 using optimal positions

25

III. DATA FUSION ARCHITECTURE

In this chapter, a data fusion model for the ballistic missile interception in the

boost phase is presented. Data fusion node design and processing architectures are

examined. The decision fusion processing architecture is determined to be the best

processing architecture for sensor fusion in this work.

A. FUSION MODEL
In the literature, many solutions for sensor (data) fusion have been proposed and

investigated. This thesis focuses on a general sensor fusion model for combining target

position data from both RF and IR sensors in order to determine the most accurate

location of the missile target in the boost phase. The fusion scheme considered here is

similar to the Joint Directors of Laboratories (JDL) model [11] and is shown in Figure 20.

Sensors, communication links, data fusion, and response systems are the major functional

blocks of the model.

EN
V

IR
O

N
M

EN
T

Communications

Data Fusion
•Data Alignment
•Data Association
•State Estimation

Resource
Management

U
SE

R
 IN

TE
R

FA
C

E

Sensors/ Sources

Response Systems
•Guidance and Control
•Sensor Control
•Process Control
•Weapons Control

EN
V

IR
O

N
M

EN
T

Communications

Data Fusion
•Data Alignment
•Data Association
•State Estimation

Resource
Management

U
SE

R
 IN

TE
R

FA
C

E

Sensors/ Sources

Response Systems
•Guidance and Control
•Sensor Control
•Process Control
•Weapons Control

Figure 20. JDL Data Fusion Model (After Ref, 11 pg. 16-18)

In this model, the sensors send the information to the data fusion node via

wireless communication links. The sensor information sent by the sensors varies

26

according to the type of fusion processing used. The data fusion node performs the data

alignment, data association and position or state estimation functions. The results of the

data fusion are sent to a resource management function. The resource management

function plans and controls the available resources (weapons, sensors, guidance and

control, and process control) using the fused information and the user directives. The

weapons and sensors are selected using the results of the resource management decisions.

The response systems then react to the environment according to the resource

management

In the following sections, two important functions of the model are discussed

further: the data fusion node design and the fusion processing algorithms.

B. DATA FUSION NODE DESIGN
The data fusion node performs three major functions: data alignment, data

association, and state estimation. Each of these is described below.

1. Data Alignment
Data alignment also known as data preparation or common referencing [Ref 11,

pg. 16-30] changes or modifies the data that come from the sensors so that this data can

be associated and compared. Data alignment modifies the sensor data to appropriate

formats, and translates the information to the correct spatio-temporal coordinate system.

It also compensates for the misalignments during changes between these dimensions.

Data alignment executes five processes that include common formatting, time

propagation, coordinate conversion, misalignment compensation, and evidential

conditioning. In the common formatting process, the data is being tested and transformed

to system standard data units and types. The fused track data are updated to predict the

expected location so that the new sensor inputs can be associated with them in the time

propagation function. The data that come from separate sensors are converted to a

common coordinate system. In this study, the coordinate systems for radars and infrared

sensors are different from each other, but through data alignment they are converted to

the Earth centric Cartesian coordinate system. In the misalignment compensation, the

27

data are corrected for the parallax between sensors. In the evidential conditioning, some

confidence values are assigned to the data that come from each sensor [11].

2. Data Association
In the data association function, the data that belong to the same target are

associated for improved position estimation. Data association is executed in three steps

[11]: hypothesis generation, hypothesis evaluation and hypothesis selection. Using

hypothesis generation, the solution space is reduced to a practical number. Feasibility

gating of prior tracks or data clustering is used for hypothesis generation. Kinematic,

parametric and a priori data are used for evaluating these hypotheses and a score is

assigned to each hypothesis. The hypothesis selection uses these scores to select one or

more sets of data to be used in the next step, which is state estimation. Data association is

not used in this study since only one target is being tracked [11].

3. State Estimation
The state estimation estimates and predicts the target position using the data that

come from data association. There are many algorithms to estimate the position of the

target. The algorithms that we use in this study include averaging (arithmetic), weighting

(using /S N), Kalman filter and Bayesian techniques. These algorithms will be described

in detail in Chapter IV.

C. PROCESSING ARCHITECTURES
There are three basic architectures for multisensor data fusion: direct fusion of

feature vectors that are representations of sensor data, and decision level sensor fusion.

1. Direct Fusion
Direct fusion uses raw data to fuse the sensor outputs. In Figure 21, the direct

fusion architecture is shown. The data received from the sensors are first subjected to the

data association function. The associated data are then fused together. This is followed by

the feature extraction operation. The results of the feature extraction block are then sent

to position estimation. These fused positions are sent to the resource management, and

guidance and control unit guides the interceptor missile to intercept the ballistic missile.

28

Sensor#1

A
ssociation

Joint D
ecision

Feature extraction

Data Fusion node

Sensor#2

Sensor#3

Sensor#4

D
ata level fusion

Sensor#1

A
ssociation

Joint D
ecision

Feature extraction

Data Fusion node

Sensor#2

Sensor#3

Sensor#4

D
ata level fusion

Figure 21. Direct level fusion (After Ref 11, pg. 1-7)

Direct fusion has the potential to achieve the best target position estimation.

Another advantage of direct fusion is that, at the end of the fusion process, the targets can

be detected even if the sensors cannot detect the target by themselves individually.

Direct fusion architecture gives the best results, but it also has some

disadvantages. The data flow from the sensors to the fusion center is large, and the

bandwidth needs are great. Direct fusion has the highest computational effort. With this

fusion architecture, position estimations are based on the information from the sensors by

evaluating the raw data. The registration accuracies play an important role, so direct

fusion is very sensitive to registration errors. The sensors are required to be the same or

similar; in this work, they are not. Since a variety of sensors (passive infrared sensors and

active radar sensors) are used in this thesis in a ballistic missile interception task, the

direct fusion architecture is not considered.

2. Feature Level Fusion
Feature level fusion combines the features of the targets that are detected in the

each sensor’s domain. In Figure 22, the feature level fusion architecture is shown. The

sensors must detect the targets in advance to be able to use this fusion process. The

sensors extract the features for each target, and these features create a feature space for

target detection [12]. The sensors process and extract the features of the measurement

29

outputs individually and then these processed data are sent to the association module in

the fusion center. After the data are associated, they are fused in the feature level fusion

center. A joint decision is formed and sent to the resource management module.

Sensor#1

A
ssociation

Joint D
ecision

Processing/
Feature extraction

Data Fusion node

Sensor#2 Processing/
Feature extraction

Sensor#3 Processing/
Feature extraction

Sensor#4 Processing/
Feature extraction

Feature level fusion
Sensor#1

A
ssociation

Joint D
ecision

Processing/
Feature extraction

Data Fusion node

Sensor#2 Processing/
Feature extraction

Sensor#3 Processing/
Feature extraction

Sensor#4 Processing/
Feature extraction

Feature level fusion

Figure 22. Feature level fusion (After Ref 11, pg. 1-7)

This type of fusion reduces the demand on registration, and the bandwidth

required for the data to flow from each sensor to the fusion center is low compared to

direct fusion.

This kind of fusion is often used for infrared sensors, but in ballistic missile

interception missions all the sensors are not infrared. The features that the radar sensors

and infrared sensors extract are different (infrared sensors use the plume temperature

while the radar sensors use the radar cross section of the ballistic missile). As a result, we

do not use this kind of fusion processing in this work.

3. Decision Level Fusion
Decision level fusion combines the local decisions of independent sensors. The

decision level fusion architecture is shown in Figure 23. For this kind of fusion process,

the sensors must make preliminary decisions. The raw data in the sensors are processed

in the sensor, and only the results that have the position estimation of the ballistic missile

are sent to the fusion center. In the fusion center, the processed position data of the

ballistic missile are associated. This associated data are then fused to achieve more

30

accurate position estimation. The fused data are sent to the resource management module,

and the interceptor is guided accordingly.

Sensor#1

A
ssociation

Joint D
ecision

Processing

Data Fusion node

Sensor#2

Sensor#3

Sensor#4

Processing

Processing

Processing

D
ecision level fusion

Sensor#1

A
ssociation

Joint D
ecision

Processing

Data Fusion node

Sensor#2

Sensor#3

Sensor#4

Processing

Processing

Processing

D
ecision level fusion

Figure 23. Decision level fusion (After Ref 11, pg. 1-7)

This data fusion process is less sensitive to spatial misregistration than the direct

and feature level fusion approaches [11]. That is, it allows a more accurate association of

the targets that contain registration errors. One of the advantages of this type of data

fusion is the simplicity of adding and subtracting the sensors to the fusion system. The

variety of the sensors does not affect the results from this fusion architecture.

In this chapter, the JDL fusion model is considered. The data fusion node design

and the data alignment, data association, and state estimation functions of the fusion node

are described. Direct fusion, feature level fusion, and decision level fusion architectures

are described, and their relative advantages and disadvantages for the ballistic missile

intercept in the boost phase are presented. The decision level fusion is selected as the

architecture for the algorithms described in Chapter IV.

31

IV DECISION LEVEL FUSION ALGORITHMS

A decision level fusion architecture is used in the simulation. Below, the decision

level fusion algorithms examined are described. They include an averaging technique, a

weighted averaging technique, a Kalman filtering, and a Bayesian technique.

A. AVERAGING TECHNIQUE
The first fusion algorithm investigated is an averaging technique. The sensors

process their own data and they send these decisions to the fusion center. In this work,

this data is the position of the ballistic missile sensed by each sensor. The averaging

technique computes the fused position as an arithmetic mean using the formula

() ()1 1 1 1 2 2 2 2ˆ ˆ, , , ,
ˆ (, ,)

2a

p x y z p x y z
p x y z

+
= (4-1-1)

where ˆ (, ,)ap x y z is the position estimation of the averaging technique, and ()1 1 1 1ˆ , ,p x y z

and ()2 2 2 2ˆ , ,p x y z are the position estimations of RF1 and RF2, respectively.

An example of the sensed positions from both RF1 and RF2 are shown in Figure

24. In Figure 24, the target’s true position, estimated positions as sensed by RF1 and

Figure 24. True target position, sensed positions by radars and arithmetic mean of sensed

positions of the target

32

RF2, and the arithmetic mean of the sensed positions are shown at an arbitrary time

instant. The RF1 sensor senses the target with a 158-m position error, RF2 sensor senses

it with a 64-m error, and the fused or arithmetic mean position is 95 m away from true

target position. In this case, however, the fused position of the target is worse than RF2

results. This situation, however, is not always true. For example, if the magnitude of the

sensed position by one radar is opposite that of the other radar’s, then the arithmetic mean

position will be better than that given by either of the radars individually.

We examine the cumulative error sensed by the radars and also the arithmetic

mean position through simulation. The rms error computed using (2-2-5) of RF1 and RF2

obtained from MATLAB simulation are shown in Figure 25. The arithmetic mean of

these errors is shown in Figure 26. We observe that the cumulative position estimation

error of RF1 is the worst of all; the results of the arithmetic mean position are better than

the RF2’s results, but RF1 gives the best results among these three.

(a) (b)(a) (b)
Figure 25. The rms error of (a) RF1 and (b) RF2

33

Figure 26. The rms error of averaging technique

The average rms error rmse for each radar using the averaging technique is shown

in Table 4 . The average rms error is computed as

∑
=

=
N

n
rmsrms ne

N
e

1

)(1 (4-1-2)

where)(nerms is the rms error at time n, and N is the number of data points. From Table

4, the averaging technique result is worse than that of RF1. A fusion algorithm is

expected to provide a better solution than either of the sensors, but in this case the

average rms error of the averaging technique is worse than RF1.

 rmse in m

RF1 99

RF2 157

Averaging tech. 102

Table 4. Average rms error for radars and averaging technique

34

B. WEIGHTED AVERAGING TECHNIQUE
The next sensor fusion algorithm that we investigate is the weighted average

method. In this algorithm, the sensors process their own data and send these decisions to

the fusion center. These decisions are the positions of the ballistic missile sensed by each

sensor.

The weighted average algorithm is similar to the averaging method; however, in

weighted average method, we weigh the sensor data by using the radar sensors’ /S N for

every time sample. The /S N for the radar sensors are calculated using (2-2-2). In the

weighted average algorithm, the higher the /S N , the larger the weight for that target

estimate. The weighted average of the target position is calculated using

1 1 1 1 1 2 2 2 2 2

1 2

ˆ ˆ(, ,) (/) (, ,) (/)ˆ (, ,)
(/) (/)w

p x y z S N p x y z S Np x y z
S N S N

× + ×=
+

 (4-2-1)

where ˆ (, ,)wp x y z is the fused target position vector using weighted averaging technique,

1 1 1 1ˆ (, ,)p x y z is the position vector of the target sensed by RF1, 1(/)S N is the signal to

noise ratio of RF1, 2 2 2 2ˆ (, ,)p x y z is the position vector of the target sensed by RF2, and

2(/)S N is the signal to noise ratio of RF2.

An example of these sensed and weighted average positions is shown in Figure

27. In this example, RF1 senses the target with a 125-m position error, RF2 senses the

same target with a 44-m error, and the weighted average position is 36 m away from the

true target position. The fused position of the target is better than both radar sensor

results.

The cumulative error sensed by the radars is examined, and the weighted average

position computed in a MATLAB simulation. We observe that the cumulative position

estimation error for the weighted averaging technique is better than that of both radars.

The rms error plots of the radar sensors are shown again in Figure 28. The results of the

weighted averaging technique are shown in Figure 29. By comparing the results of Figure

28 and 29, the weighted averaging technique provides the best position estimate among

the three plots.

35

11

Figure 27. True target position, sensed positions by radars and weighted averaging position

of the target

(a) (b)(a) (b)
Figure 28. The rms error of (a) RF1 and (b) RF2

36

Figure 29. The rms error of weighted averaging technique estimation of target position

The average rms errors rmse , computed as given by (4-1-2), are shown in Table 5.

For the averaging technique (see Table 4), the average rms error was 102 m., which was

worse than that of RF1. The weighted averaging technique provides a significant

improvement over these results. The average error due to weighted averaging technique

is 68 m.

 rmse in m

RF1 99

RF2 157

Weighted averaging technique. 68

Table 5. Average rms error for radar sensors and weighted averaging technique

37

C. KALMAN FILTERING
Another sensor fusion approach to achieve better position estimation uses Kalman

filtering. By using Kalman filtering, we can minimize the fluctuations that occur during

the sensing of the ballistic missile. These fluctuations are due to the random error

described in Chapter II.

To apply Kalman filter to sensor data for estimating the ballistic missile position,

the ballistic missile must be modeled by a set of differential equations. In this study, a

discrete-time Markov model is used as [13]:

() (1) (1)x t Fx t w t= − + − (4-3-1)

where x(t) represents the state vector of the ballistic missile at time t, F is the transition

matrix, and w(t) is the white, Gaussian noise with zero-mean with the following

properties [14]:

[] 0E w = (4-3-2)

TE ww Q =

where E[] represents the expected value, and Q is the covariance matrix of the process

noise. The sensor measurements of the ballistic missile’s positions must be linearly

related to the system state variables according to

(1) (1) (1) (1)z t H t x t v t− = − − + − (4-3-3)

where z(t) is the measurement vector, H(t) is the measurement matrix, and v(t) is the

white Gaussian measurement noise with zero mean with the following properties

[] 0E v = (4-3-4)

TE vv R =

where R is the covariance matrix of the measurement noise v(t). Using (4-3-1) and

(4-3-3), the Kalman filter can be established. The state estimate can be obtained as

ˆ ˆ(| 1) (1) (1| 1)x t t F t x t t− = − − − . (4-3-5)

If P is the covariance matrix of estimation errors computed recursively as

38

(| 1) (1) (1| 1) (1) (1)TP t t F t P t t F t Q t− = − − − − + − , (4-3-6)

the Kalman gain can be calculated using the following formula:

() 1
() (| 1) () () (| 1) () ()T TK t P t t H t H t P t t H t R t

−
= − − + (4-3-7)

The equation of the optimum estimate of the ballistic missile state vector is given by

()ˆ ˆ ˆ(|) (| 1) () () () (| 1)x t t x t t K t z t H t x t t= − + − − (4-3-8)

and the update for the error covariance update is

() ()(|) () () (| 1) () () () ()T TP t t I K t H t P t t I K t H t K t RK t= − − − + (4-3-9)

By repeating the equations recursively, the updated state estimations can be found.

The Kalman filter processes the measurements coming from the sensors in real

time and smooths the outputs of the radar sensors’ range, elevation and azimuth

information to obtain better target position estimates. Error in range r, elevation φ , and

azimuth θ are computed using

ˆ
ˆ

ˆ

err

err

err

rr r
φ φ φ
θ θ θ

 = −

 (4-3-10)

where (, , err err errr φ θ) are error components, (, , r φ θ) are true values, and (ˆ ˆˆ, , r φ θ) are

the measurements (sensor data) or estimates of the Kalman filter. The Kalman filtered

range, elevation, and azimuth error of RF1 are shown in Figure 30. The blue lines

represent the error for the range, elevation, and azimuth sensed by the RF1. The black

line is the Kalman filtered error for the azimuth, elevation, and range for RF1. By using

the Kalman filter, the fluctuations of the error have been reduced significantly in all three

plots.

The rms position error for RF1 can be computed by first converting from the

spherical to the Cartesian coordinates and then using (2-2-5). The rms position errors for

sensor data (blue line) and Kalman filtered data (black line) are shown in Figure 31.

39

Clearly, the Kalman filter helps reduce the rms position error. Next, the Kalman filtered

position estimates for both RF1 and RF2 will be fused using weighted averaging.

(a) (b)

(c)

er
ro

r (
m

)

er
ro

r (
ra

di
an

s)

er
ro

r (
ra

di
an

s)

(a) (b)

(c)

er
ro

r (
m

)

er
ro

r (
ra

di
an

s)

er
ro

r (
ra

di
an

s)

Figure 30. Kalman filtered errors for RF1: (a) range, (b) elevation and (c) azimuth

40

Figure 31. Overall position error after using Kalman filter for RF1

Figure 32 shows the range, elevation, and azimuth error plots for sensor data

(blue) and Kalman filtered data (black) for RF2. The fluctuations of the rms error

diminished in all three plots. Figure 33 shows the rms position error for sensor (blue) and

Kalman filtered (black) data. As in Figure 31, the Kalman helps reduce the rms position

error of RF2 significantly.

41

(a) (b)

(c)

er
ro

r (
ra

di
an

s)

er
ro

r (
m

)

er
ro

r (
ra

di
an

s)

(a) (b)

(c)

er
ro

r (
ra

di
an

s)

er
ro

r (
m

)

er
ro

r (
ra

di
an

s)

Figure 32. Kalman filtered errors for RF2: (a) range, (b) elevation and (c) azimuth

Figure 33. Overall position error after using Kalman filter for RF2

42

To fuse the Kalman filtered radar sensor outputs, the weighted averaging

technique is used. The rms error of the Kalman filtered and sensor data are combined

using (4-2-1). The signal-to-noise ratios are used for weighing the Kalman filtered RF1

and RF2 outputs. Weighted average results of the Kalman filtered rms error are shown in

Figure 34.

Figure 34. The rms error for weighted averaging technique after RF1 and RF2 outputs are

Kalman filtered

Table 6 lists the average rms errors rmse for RF1, RF2, and the weight averaged

Kalman filtered errors. The average error for Kalman filtering is 52 m, which is about

half that of RF1 and one third that of RF2. From Table 4, recall that the averaging

technique has produced an average rms error of 102 m. From Table 5, the weighted

averaging technique has produced an average rms error of 68 m. The Kalman filtered

algorithm is clearly better than those two algorithms.

43

 rmse in m

RF1 99

RF2 157

Kalman filtering 52

Table 6. Average rms error for radar sensors and Kalman filtering

D. BAYESIAN TECHNIQUE
The application of the Bayesian algorithm to the sensor fusion problem begins

with assigning probabilities of ballistic missile being at a point in the space, according to

the sensor outputs. These probabilities are used to find the maximum probable position of

the ballistic missile target at that time. By combining the probabilities of both radar and

infrared sensor outputs, we can estimate the target position that has the highest

probability.

1 Theory
The Baye’s rule for probability density functions (PDF) is given by [11]

(|) ()(|)
()

Y X
X

Y

f y x f xf x y
f y

= (4-4-1)

where (|)Xf x y and (|)Yf y x are the conditional PDFs, ()Xf x and ()Yf y are the

marginal PDFs,. y represents measurements, and x the true position. Here, ()Xf x is the a

priori PDF of true position of the target. The conditional PDF (|)Xf x y becomes the new

a prior PDF as new sensor measurements y are made available. If the a priori

information is not available, a uniform distribution is used for the a prior PDF ()Xf x [2].

Baye’s rule is applied recursively as new position data are available from sensor

measurements.

44

2. Implementation
In Chapter II, we discussed the probability density functions of the radar sensor

data. The error in estimating the position of the target using the radar sensor is modeled

as Gaussian noise. The variances of these Gaussian noise are calculated using (2-2-3)

and (2-2-4). The probability density functions of the target position within the infrared

sensors’ IFOV intersection are determined in Chapter II to be uniform. The intersection

volume of two infrared sensors’ instantaneous field of views can be illustrated as in

Figure 10. The intersection of the IR and radar probability density functions are shown in

Figure 35. The PDFs of radar sensors’ measurements are Gaussian and the PDF of

infrared sensors’ IFOV intersection volume is uniform.

The probabilities of target being within a small interval for each PDF can be

calculated by integrating the area between two points as shown in Figure 35. For

example, the probability of the target being between 1a and 2a can be found by integrating

the shaded area.

Target volume from IR sensorsTarget volume from IR sensors

RF1 estimate RF2 estimate

1 1 1(|)Xf x y 2 2 2(|)Xf x y

1a 2a

Target volume from IR sensorsTarget volume from IR sensors

RF1 estimate RF2 estimate

1 1 1(|)Xf x y 2 2 2(|)Xf x y

1a 2a

Figure 35. The PDFs of radars’ measurements and infrared sensors’ IFOV intersection

volume

The probability that the target is present in any small interval is calculated for

each sensor. The probabilities need to be calculated only over the region of overlap

(shown in red in Figure 35) as the product is zero outside of the overlap. These

45

probabilities are represented as 1(|)RFP Y X for RF1, 2 (|)RFP Y X for RF2 and (|)IRP Y X

for intersection volume of IR sensors’ IFOVs. First, the overall (|)P Y X is obtained

using

1 2(|) (|) (|) (|)RF RF IRP Y X P Y X P Y X P Y X= × × (4-4-2)

Then, based on (4-4-1), the probability of target position X given the measurements Y is

given by:

(|) ()(|)
()

P Y X P XP X Y
P Y

= (4-4-3)

where ()P X and ()P Y are the marginal probabilities of target position X and measured

data Y, respectively.

In the simulation, the probabilities are computed throughout the ballistic missile’s

flight. The Baye’s rule is applied to the sensor measurements, and the position with the

largest probability of having the ballistic missile is found. This position, having the

highest probability, is the Bayesian technique’s estimate of target position.

3. Results
Using Baye’s rule (4-4-3), the position estimates of the Bayesian technique are

found. The rms position error for the estimates using Bayesian technique can be

computed using (2-2-5). The rms position errors using Bayesian technique are shown in

Figure 36.

Figure 36. The rms position error using Bayesian technique.

46

The results of the Bayesian technique are clearly the best among the four fusion

algorithms discussed here. To achieve a better result, one can use a combination of these

algorithms. The average rms error for Bayesian technique (see Table 7) decreased to

19.5 m . The average error for the averaging technique, weighted averaging technique,

and the Kalman filtering technique were 102 m , 68 m, and 52 m, respectively. This is a

significant improvement for the ballistic missile position estimation using Bayesian

technique based sensor fusion.

 rmse in m

RF1 99

RF2 157

Bayesian technique. 19.5

Table 7. Average error for radar sensors and Bayesian technique

In this chapter, four different fusion algorithms are investigated. First, the

averaging technique is examined. The average rms error of the averaging technique is

worse than that of RF1. The second algorithm investigated is the weighted averaging

technique. The average rms error of this algorithm is better than that of the averaging

technique. For the Kalman filtering algorithm, the average rms error is better than the

previous two algorithms. The fourth algorithm is the Bayesian technique, which gives the

best results.

47

V. CONCLUSION

In this thesis, the multiple sensor fusion in the boost phase of a ballistic missile

intercept is examined. Measurements of RF and IR sensors are considered for fusion

here. The fused sensor outputs lead to better guidance of the intercept missile and

tracking of the ballistic missile. A MATLAB simulation is used to model the ballistic

missile and the infrared and radar sensors. Four different data fusion algorithms are

simulated and their results compared.

A. CONCLUSIONS
From the results of the IR sensor analysis, in the designing of infrared sensors,

3 m to 5 mµ µ band should be used for detecting and tracking the ballistic missile. The

infrared sensor satellites should be low earth orbit (LEO) satellites as the higher orbital

satellites increase the IFOV intersection volume. The signal-to-clutter ratio, which plays

an important role in detecting the ballistic missile, must be high enough to detect and

track the ballistic missile for the entire boost phase. In this thesis, the triangulation of the

instantaneous field of view for the infrared sensors is used to obtain the range

information.

For the radar sensors, the positions of the radar sensors play an important role in

detecting and tracking the ballistic missile.

The decision level fusion for combining the sensor outputs is considered in this

work. Four sensor fusion algorithms are investigated. In the averaging technique, the

fused results are not always better than these of the individual sensor outputs. The

weighted averaging technique performs better than the averaging technique. The Kalman

filtering approach helps decrease the sensor rms errors significantly. The Bayesian

technique has the best performance of all four fusion algorithm investigated here.

B. RECOMMENDATIONS

This thesis investigated a single target scenario. In a future study, fusion

algorithms for intercepting multiple ballistic missiles in the boost phase may be

investigated. The issues of association and correlation need to be addressed.

48

In this thesis, the interceptor missile is not included; only the detection, tracking

and position estimation of the ballistic missile is studied. In a future study, the effects of

sensor fusion on the interceptor missile’s kill vehicle effectiveness may be quantified.

The ballistic missile may use electronic attack techniques, such as jamming,

throughout the boost phase. The effects of electronic attack on fusion performance may

be studied in a future work.

49

APPENDIX MATLAB CODES

The MATLAB codes to simulate the sensors, ballistic missile and compute the

algorithms are included in this appendix.

%gokhan humali 2004 NPS

%sensor fusion for boost phase interception of ballistic missile

clear;

clc;

%Constants

Re = 6371e3; %Earth radius (m)

Me = 5.9742e24; %Earth mass (kg)

Gc = 6.673e-11; %Gravitational constant (m^3 kg^-1 s^-2)

g0 = Gc * Me / (Re ^ 2); %Gravitational Acceleration (sea level)

c = 299792458; %Speed of light (m/s)

t = 0; %Time (s)

dt = 0.1; %Time increment (s)

posEarth = [0; 0; 0]; %Earth's center position

degRad = pi/180; %Degree to Radian conversion

%target information

balMisLatH = 'N'; %Bal. Mis. launch site latitude hemisphere

balMisLatD = 41; %Bal. Mis. launch site latitude (degree)

balMisLatM = 00; %Bal. Mis. launch site latitude (minute)

balMisLonH = 'E'; %Bal. Mis. launch site longitude hemisphere

balMisLonD = 129; %Bal. Mis. launch site longitude (degree)

50

balMisLonM = 00; %Bal. Mis. launch site longitude (minute)

%change the geographical coordinates of the ballistic missile to cartesian

[thetaBM phiBM] = geo2sph(balMisLatH, balMisLatD, balMisLatM, balMisLonH,
balMisLonD, balMisLonM);

[xBM, yBM, zBM] = sph2car(thetaBM, phiBM, Re);

posBM = [xBM; yBM; zBM];

posLaunchFac = posBM; %position of ballistic missile laucnh facility

accBM = [0; 0; 0]; %Ballistic missile acceleration

balMisLauAngAzDeg = 50.1; %Bal. Mis. launch angle (az) (from true north)

balMisLauAngElDeg = 84; %Bal. Mis. launch angle (elevation)

balMisLauAngAz = balMisLauAngAzDeg * degRad; %Bal. Mis. launch ang (az)rad)

balMisLauAngEl = balMisLauAngElDeg * degRad; %Bal. Mis. launch ang (el)(rad)

balMisGrWeiStg1 = 48988; %Bal. Mis. stage 1 weight (kg)

balMisGrWeiStg2 = 27669; %Bal. Mis. stage 2 weight (kg)

balMisGrWeiStg3 = 7711; %Bal. Mis. stage 3 weight (kg)

balMisGrWeiStg4 = 2268; %Bal. Mis. stage 4 weight (kg)

balMisFuWeiStg1 = 41640; %Bal. Mis. stage 1 fuel weight (kg)

balMisFuWeiStg2 = 23972; %Bal. Mis. stage 2 fuel weight (kg)

balMisFuWeiStg3 = 6554; %Bal. Mis. stage 3 fuel weight (kg)

balMisFuWeiStg4 = 0; %Bal. Mis. stage 4 fuel weight (kg)

balMisISPstg1 = 300; %Bal. Mis. ISP for stage 1
balMisISPstg2 = 300; %Bal. Mis. ISP for stage 2

balMisISPstg3 = 300; %Bal. Mis. ISP for stage 3

balMisISPstg4 = 0; %Bal. Mis. ISP for stage 4

balMisBurTimStg1 = 60; %Bal. Mis. burn time for stage 1

balMisBurTimStg2 = 60; %Bal. Mis. burn time for stage 2

balMisBurTimStg3 = 60; %Bal. Mis. burn time for stage 3

51

balMisBurTimStg4 = 1; %Bal. Mis. burn time for stage 4

%total mass of ballistic missile

totMass = balMisGrWeiStg1+balMisGrWeiStg2+balMisGrWeiStg3+balMisGrWeiStg4;

%dM/dt of ballistic missile

dMdtStg1 = balMisFuWeiStg1 / balMisBurTimStg1;

dMdtStg2 = balMisFuWeiStg2 / balMisBurTimStg2;

dMdtStg3 = balMisFuWeiStg3 / balMisBurTimStg3;

dMdtStg4 = balMisFuWeiStg4 / balMisBurTimStg4;

%canister weight of ballistic missile

canWeiStg1 = balMisGrWeiStg1 - balMisFuWeiStg1;

canWeiStg2 = balMisGrWeiStg2 - balMisFuWeiStg2;

canWeiStg3 = balMisGrWeiStg3 - balMisFuWeiStg3;

canWeiStg4 = balMisGrWeiStg4 - balMisFuWeiStg4;

%next stage time

nexStgTime1 = 0;

nexStgTime2 = nexStgTime1 + balMisBurTimStg1;

nexStgTime3 = nexStgTime2 + balMisBurTimStg2;

nexStgTime4 = nexStgTime3 + balMisBurTimStg3;

%ballistic missile velocity and thrust unit vectors

unWeiBalMis = (posEarth - posBM) ./ Re; %Weight unit vector

[vBMx vBMy vBMz] = top2car(balMisLauAngAz, balMisLauAngEl, balMisLatH,
balMisLatD, balMisLatM, balMisLonH, balMisLonD, balMisLonM);

unBMvel = [vBMx; vBMy; vBMz]; %Velocity unit vector

unThrBM = unBMvel; %Thrust unit vector

stgBM = 1; %Ballistic missile stage

magThrBM = dMdtStg1 * g0 * balMisISPstg1; %magnitude of BM thrust vector

magVelBM = 17; %arbitrary silo exit velocity

52

velBM = magVelBM * unBMvel; %velocity of ballistic missile

grndTrckBM = posBM; %ground track of BM

%target information ends

%infrared sensor information

hIR1 = 1000e3; %Height of infrared sensor 1 (above ground) (m)

hIR2 = 1000e3; %Height of infrared sensor 2 (above ground) (m)

IR1LatH = 'N'; %infrared sensor (IR1) latitude hemisphere

IR1LatD = 36; %IR1 latitude (degree)

IR1LatM = 00; %IR1 latitude (minute)

IR1LonH = 'E'; %IR1 longitude hemisphere

IR1LonD = 132; %IR1 longitude (degree)

IR1LonM = 00; %IR1 longitude (minute)

IR2LatH = 'N'; %infrared sensor (IR2) latitude hemisphere

IR2LatD = 46; %IR2 latitude (degree)

IR2LatM = 00; %IR2 latitude (minute)

IR2LonH = 'E'; %IR2 longitude hemisphere

IR2LonD = 132; %IR2 longitude (degree)

IR2LonM = 00; %IR2 longitude (minute)

%change the geographical coordinates of the IR sensors to cartesian

[thetaIR1 phiIR1] = geo2sph(IR1LatH, IR1LatD, IR1LatM, IR1LonH, IR1LonD,
IR1LonM);

[xIR1, yIR1, zIR1] = sph2car(thetaIR1, phiIR1, (Re + hIR1));

posIR1 = [xIR1; yIR1; zIR1];

[thetaIR2 phiIR2] = geo2sph(IR2LatH, IR2LatD, IR2LatM, IR2LonH, IR2LonD,
IR2LonM);

[xIR2, yIR2, zIR2] = sph2car(thetaIR2, phiIR2, (Re + hIR2));

53

posIR2 = [xIR2; yIR2; zIR2];

IFOV1 = 20e-6; %IFOV of infrared sensor #1

IFOV2 = 20e-6; %IFOV of infrared sensor #2

%infrared sensor information ends

%Ballistic Missile RCS information for X band radar (from kuzun thesis)

load POstage1_X; %load rcs data of bal. mis. for stage 1 (x band)

balMisRCSstg1X = Sth;

load POstage2_X; %load rcs data of bal. mis. for stage 2 (x band)

balMisRCSstg2X = Sth;

load POstage3_X; %load rcs data of bal. mis. for stage 3 (x band)

balMisRCSstg3X = Sth;

load POstage4_X; %load rcs data of bal. mis. for stage 4 (x band)

balMisRCSstg4X = Sth;

rcsOrgAngMono = 0:360; %angle incriments in the original rcs table

rcsInc = 0:0.1:360; %angle incriments for interpolation

%interpolation of rcs data to 0.1 degrees increments

rcsXstg1 = interp1(rcsOrgAngMono, balMisRCSstg1X, rcsInc);

rcsXstg2 = interp1(rcsOrgAngMono, balMisRCSstg2X, rcsInc);

rcsXstg3 = interp1(rcsOrgAngMono, balMisRCSstg3X, rcsInc);

rcsXstg4 = interp1(rcsOrgAngMono, balMisRCSstg4X, rcsInc);

%radar sensor information
RF1LatH = 'N'; %radar sensor 1 (RF1) latitude hemisphere

RF1LatD = 44; %RF1 latitude (degree)

RF1LatM = 34; %RF1 latitude (minute)

RF1LonH = 'E'; %RF1 longitude hemisphere

RF1LonD = 130; %RF1 longitude (degree)

RF1LonM = 48; %RF1 longitude (minute)

54

RF2LatH = 'N'; %radar sensor 2 (RF2) latitude hemisphere

RF2LatD = 37; %RF2 latitude (degree)

RF2LatM = 21; %RF2 latitude (minute)

RF2LonH = 'E'; %RF2 longitude hemisphere

RF2LonD = 135; %RF2 longitude (degree)

RF2LonM = 04; %RF2 longitude (minute)

%change the geographical coordinates of the radar sensors to cartesian

[thetaRF1 phiRF1] = geo2sph(RF1LatH, RF1LatD, RF1LatM, RF1LonH, RF1LonD,
RF1LonM);

[xRF1, yRF1, zRF1] = sph2car(thetaRF1, phiRF1, Re);

posRF1 = [xRF1; yRF1; zRF1];

[thetaRF2 phiRF2] = geo2sph(RF2LatH, RF2LatD, RF2LatM, RF2LonH, RF2LonD,
RF2LonM);

[xRF2, yRF2, zRF2] = sph2car(thetaRF2, phiRF2, Re);

posRF2 = [xRF2; yRF2; zRF2];

%radar sensor specifications

PtR1 = 1e6; %RF1 peak power (w)

PtR2 = 1e6; %RF2 peak power (w)

DR1 = 4.15; %RF1 antenna diameter (m)

DR2 = 4.15; %RF2 antenna diameter (m)

fR1 = 10e9; %RF1 frequency (Hz)
fR2 = 10e9; %RF2 frequency (Hz)

roR1 = 0.68; %RF1 antenna efficiency

roR2 = 0.7; %RF2 antenna efficiency

tauR1 = 50e-6; %RF1 pulsewidth

tauR2 = 50e-6; %RF2 pulsewidth

FR1 = 4; %RF1 noise figure

FR2 = 4; %RF2 noise figure

55

nR1 = 20; %RF1 # of pulses being integrated

nR2 = 20; %RF2 # of pulses being integrated

kT0 = 4e-21; %Watts/Hz

kAng = 1.7; %k value for angle

kRan = 1.7; %k value for angle

lamR1 = c ./ fR1; %wavelength of RF1

lamR2 = c ./ fR2; %wavelength of RF2

AeR1 = pi .* ((DR1 ./ 2) ^ 2); %RF1 antenna physical area

AeR2 = pi .* ((DR2 ./ 2) ^ 2); %RF2 antenna physical area

GR1 = (4 * pi * roR1 * AeR1 / (lamR1 ^ 2)); %RF1 antenna gain

GR2 = (4 * pi * roR2 * AeR2 / (lamR2 ^ 2)); %RF2 antenna gain

beamWR1Deg = 65 * lamR1 / DR1; %RF1 beamwidth (degree)

beamWR2Deg = 65 * lamR2 / DR2; %RF2 beamwidth (degree)

beamWR1 = beamWR1Deg * degRad; %RF1 beamwidth (radian)

beamWR2 = beamWR2Deg * degRad; %RF2 beamwidth (radian)

%radar sensor information ends

%initial values for misc variables

magDiffBM_RF1 = 0; %mag of dif of true BM position and sensed pos. by RF1

magDiffBM_RF2 = 0; %mag of dif of true BM position and sensed pos. by RF2

magDifAritMean = 0; %mag of dif of true BM pos and arit mean of RF1 and RF2
results

magDifWeiAve = 0; %mag of dif of true BM pos and weighted ave of RF1 and
RF2 results

magDifWeiIR = 0; %mag of dif of true BM pos and weighted ave of RF1 and
RF2 in IR volume

%Arrays

timeArr = []; %Simulation time array

posArrBM = []; %Ballistic missile position array

grndTrckArrBM = []; %Ballistic missile ground track array

distArrBM = []; %Ballistic missile ground distance array

velArrBM = []; %Ballistic missile velocity array

56

difArrBM_RF1 = []; %Array of difference between true pos of BM and RF1 sensed

difArrBM_RF2 = []; %Array of difference between true pos of BM and RF2 sensed

difAritMeanBM_RF = []; %Array of diff between true pos of BM and arit mean of RF
sensor outputs

difWeiArrBM_RF = []; %Array of diff between true pos of BM and weighted ave.
pos of RF sensor outputs

difWeiArrIR = []; %Array of diff between true pos of BM and weighted ave
pos of RF sensor outputs using IR volume

flag1 = 1;

while t < nexStgTime4

 %assign ISPT and dMdt values for each stage

 if t < nexStgTime2

 if flag1 == 1

 ISPT = balMisISPstg1;

 dMdt = dMdtStg1;

 flag1 = 2;

 end

 stageBM = 1;

 elseif (nexStgTime2 <= t) & (t < nexStgTime3)

 if flag1 == 2

 totMass = totMass - canWeiStg1;

 ISPT = balMisISPstg2;

 dMdt = dMdtStg2;

 flag1 = 3;
 end

 stageBM = 2;

 elseif (nexStgTime3 <= t) & (t < nexStgTime4)

 if flag1 == 3

 totMass = totMass - canWeiStg2;

 ISPT = balMisISPstg3;

 dMdt = dMdtStg3;

57

 flag1 = 4;

 end

 stageBM = 3;

 else

 totMass = totMass - canWeiStg3;

 ISPT = balMisISPstg4;

 dMdt = dMdtStg4;

 stageBM = 4;

 end

 %magnitude of position vector of Ballistic missile

 magPosBM = sqrt(posBM(1) ^ 2 + posBM(2) ^ 2 + posBM(3) ^ 2);

 %unit vector of ballistic missile position vector

 unPosBM = posBM / magPosBM;

 gBM = (Gc * Me) / (magPosBM ^ 2); %gravitational acceleration of BM

 velBM = velBM + accBM * dt; %velocity vector of BM

 %magnitude of velocity vector of BM

 magVelBM = sqrt(velBM(1) ^ 2 + velBM(2) ^ 2 + velBM(3) ^ 2);

 unBMvel = velBM / magVelBM; %unit vector of vel vec of BM

 magWeiBM = totMass * gBM; %magnitude of weight vector of ball missile

 unMagWeiBM = -unPosBM; %unit vec of weight vector of ball missile

 weiVec = unMagWeiBM * magWeiBM; %weight vector of ballistic missile

 magThrBM = dMdt * gBM * ISPT; %magnitude of thrust vector of ball missile
 unThrBM = unBMvel; %unit vector of thrust vec of ball missile

 thrBM = magThrBM * unThrBM; %thrust vector of ballistic missile

 totForceBM = weiVec + thrBM; %total force on ballistic missile

 accBM = totForceBM / totMass; %acceleration of ballistic missile

 totMass = totMass - dMdt * dt; %total mass of the ballistic missile

58

 posBM = posBM + velBM * dt; %new position of the ballistic missile

 LOSRF1BM = posBM - posRF1; %line of sight of ballistic missile from RF1

 %magnitude of line of sight of ballistic missile from RF1

magLOSRF1BM = sqrt(LOSRF1BM(1) ^ 2 + LOSRF1BM(2) ^ 2 +
LOSRF1BM(3) ^ 2);

 %unit vector of line of sight of ballistic missile from RF1

 unLOSRF1BM = LOSRF1BM / magLOSRF1BM;

 %angle of line of sight

 lookAngRF1 = acos(dot(unLOSRF1BM, unBMvel));

 LOSRF2BM = posBM - posRF2; %line of sight of ballistic missile from RF2

 %magnitude of line of sight of ballistic missile from RF2

magLOSRF2BM = sqrt(LOSRF2BM(1) ^ 2 + LOSRF2BM(2) ^ 2 +
LOSRF2BM(3) ^ 2);

 %unit vector of line of sight of ballistic missile from RF2

 unLOSRF2BM = LOSRF2BM / magLOSRF2BM;

 %angle of line of sight

 lookAngRF2 = acos(dot(unLOSRF2BM, unBMvel));

 RF1RCSIndex = round((lookAngRF1*180/pi)*10) + 1;

 RF2RCSIndex = round((lookAngRF2*180/pi)*10) + 1;

 %Determine RCS Seen by RF Sensors According to Stage (after kuzun thesis)

 if stageBM == 1
 RCS1 = rcsXstg1(RF1RCSIndex);

 RCS2 = rcsXstg1(RF2RCSIndex);

 elseif stageBM == 2

 RCS1 = rcsXstg2(RF1RCSIndex);

 RCS2 = rcsXstg2(RF2RCSIndex);

 elseif stageBM == 3

 RCS1 = rcsXstg3(RF1RCSIndex);

59

 RCS2 = rcsXstg3(RF2RCSIndex);

 else

 RCS1 = rcsXstg4(RF1RCSIndex);

 RCS2 = rcsXstg4(RF2RCSIndex);

 end

 vecBM_RF1 = posBM - posRF1; %Vector between Ballistic missile and RF1

 %Magnitude of Ballistic missile - RF1 vector

magBM_RF1 = sqrt((vecBM_RF1(1) ^ 2) + (vecBM_RF1(2) ^ 2) +
(vecBM_RF1(3) ^ 2));

 %True angle between Ballistic missile and RF1

 trueAngBM_RF1 = atan2(vecBM_RF1(2), vecBM_RF1(1));

 vecBM_RF2 = posBM - posRF2; %Vector between target and RF2

 %Magnitude of Ballistic missile - RF2 vector

magBM_RF2 = sqrt((vecBM_RF2(1) ^ 2) + (vecBM_RF2(2) ^ 2) +
(vecBM_RF2(3) ^ 2));

 %True angle between Ballistic missile and RF2

 trueAngBM_RF2 = atan2(vecBM_RF2(2), vecBM_RF2(1));

SNR1 = PtR1 * (GR1^2) * (lamR1 ^2) * (10^(RCS1 / 10)) * tauR1 / (((4 * pi) ^3)
* kT0 * FR1 * (magBM_RF1 ^ 4)); %SNR of RF1

SNR2 = PtR2 * (GR2^2) * (lamR2 ^2) * (10^(RCS2 / 10)) * tauR2 / (((4 * pi) ^3)
* kT0 * FR2 * (magBM_RF2 ^ 4)); %SNR of RF2

 %Sigma of angle error of RF1
 sigAngleRF1 = beamWR1 / (kAng * sqrt(2 * SNR1 * nR1));

 %Sigma of angle error of RF2

 sigAngleRF2 = beamWR2 / (kAng * sqrt(2 * SNR2 * nR2));

 errAzRF1 = sigAngleRF1 * randn; %Erroneous angle for RF1

 errAzRF2 = sigAngleRF2 * randn; %Erroneous angle for RF2

 errElRF1 = sigAngleRF1 * randn; %Erroneous angle for RF1

60

 errElRF2 = sigAngleRF2 * randn; %Erroneous angle for RF2

 %Sigma of range error of RF1

 sigRanRF1 = c * tauR1 / (2 * kAng * sqrt(2 * SNR1 * nR1));

 %Sigma of range error of RF2

 sigRanRF2 = c * tauR2 / (2 * kAng * sqrt(2 * SNR2 * nR2));

 errRanRF1 = sigRanRF1 * randn; %Erroneous range for RF1

 errRanRF2 = sigRanRF2 * randn; %Erroneous range for RF2

 %Position of target according to RF1 with error due to az, el and range sigmas

errPosBM_RF1 = senPos(vecBM_RF1, magBM_RF1, posRF1, RF1LatH,
RF1LatD, RF1LatM, RF1LonH, RF1LonD, RF1LonM, errAzRF1,
errElRF1, errRanRF1);

 %Position of target according to RF2 with error due to az, el and range sigmas

errPosBM_RF2 = senPos(vecBM_RF2, magBM_RF2, posRF2, RF2LatH,
RF2LatD, RF2LatM, RF2LonH, RF2LonD, RF2LonM, errAzRF2,
errElRF2, errRanRF2);

 %Magnitude of target position acc to RF1 with error

magErrPosBM_RF1 = sqrt(errPosBM_RF1(1) ^ 2 + errPosBM_RF1(2) ^ 2 +
errPosBM_RF1(3) ^ 2);

 %Magnitude of target position acc to RF2 with error

magErrPosBM_RF2 = sqrt(errPosBM_RF2(1) ^ 2 + errPosBM_RF2(2) ^ 2 +
errPosBM_RF2(3) ^ 2);

 %Position of target sensed by RF1 (from the origin of the earth)

 posBM_RF1 = posRF1 + errPosBM_RF1;

 %Position of target sensed by RF2 (from the origin of the earth)

 posBM_RF2 = posRF2 + errPosBM_RF2;

diffBM_RF1 = posBM - posBM_RF1; %Difference between bal mis and
RF1 sensed

 %Magnitude of difference between bal mis and RF1 sensed

61

magDiffBM_RF1 = sqrt((diffBM_RF1(1) ^ 2) + (diffBM_RF1(2) ^ 2) +
(diffBM_RF1(3) ^ 2));

diffBM_RF2 = posBM - posBM_RF2; %Difference between bal mis and
RF2 sensed

 %Magnitude of difference between bal mis and RF2 sensed

magDiffBM_RF2 = sqrt((diffBM_RF2(1) ^ 2) + (diffBM_RF2(2) ^ 2) +
(diffBM_RF2(3) ^ 2));

 %Midline of IR 1 with error up to IFOV/2

 errBM_IR1 = midIRline(posBM, posIR1, IFOV1);

 %Midline of IR 2 with error up to IFOV/2

 errBM_IR2 = midIRline(posBM, posIR2, IFOV2);

 %volume of intersection of IR 1 and IR 2 using volumeIR function

volArray = volumeIR(posBM, posIR1, posIR2, errBM_IR1, errBM_IR2, IFOV1,
IFOV2);

 %Arithmetic mean position of bal mis sensed by radars

 aritMean = (posBM_RF1 + posBM_RF2) ./ 2;

 %Difference between true position of bal mis and arithmetic mean position

 difAritMean = posBM - aritMean;

 %Magnitude of difAritMean

magDifAritMean = sqrt(difAritMean(1) ^ 2 + difAritMean(2) ^ 2 +
difAritMean(3) ^ 2);

 %Weighted position of target, sensed by radars, using range
weiPosBM_RF = (SNR1 * posBM_RF1 + SNR2 * posBM_RF2) / (SNR1 +

SNR2);

 %Difference between true position of bal mis and weighted position

 difWeiPosBM = posBM - weiPosBM_RF;

 %Magnitude of difWeiPosBM

magDifWeiPosBM = sqrt(difWeiPosBM(1) ^ 2 + difWeiPosBM(2) ^ 2 +
difWeiPosBM(3) ^ 2);

62

%Shifting the position of sensed bal mis to the nearest point in the IR volume
using corrTRIR function

finPosBM_RFIR1 = corrTRIR(volArray, errPosBM_RF1, errBM_IR1,
errBM_IR2, posIR1, posIR2, IFOV1, IFOV2);

finPosBM_RFIR2 = corrTRIR(volArray, errPosBM_RF2, errBM_IR1,
errBM_IR2, posIR1, posIR2, IFOV1, IFOV2);

 %Magnitude of finPosBM_RFIR1

magFinPosBM_RFIR1 = sqrt(finPosBM_RFIR1(1) ^ 2 + finPosBM_RFIR1(2) ^
2 + finPosBM_RFIR1(3) ^ 2);

magFinPosBM_RFIR2 = sqrt(finPosBM_RFIR2(1) ^ 2 + finPosBM_RFIR2(2) ^
2 + finPosBM_RFIR2(3) ^ 2);

 %Weighted result of shifted positions

weiBM_RFIR = (SNR1 * finPosBM_RFIR1 + SNR2 * finPosBM_RFIR2) /
(SNR1 + SNR2);

difWeiBM_RFIR = posBM - weiBM_RFIR;

magDifWeiBM_RFIR = sqrt(difWeiBM_RFIR(1) ^ 2 + difWeiBM_RFIR(2) ^ 2
+ difWeiBM_RFIR(3) ^ 2);

 timeArr = [timeArr t]; %Time array

 posArrBM = [posArrBM posBM]; %position array of ballistic missile

 %Array of difference between true bal mis position and sensed by RF1

 difArrBM_RF1 = [difArrBM_RF1 magDiffBM_RF1];

 %Array of difference between true bal mis position and sensed by RF2

 difArrBM_RF2 = [difArrBM_RF2 magDiffBM_RF2];
 %Array of difference between true bal mis position and mean position

 difAritMeanBM_RF = [difAritMeanBM_RF magDifAritMean];

 %Array of difference between true bal mis position and weighted position

 difWeiArrBM_RF = [difWeiArrBM_RF magDifWeiPosBM];

%Array of difference between true bal mis pos and corrected position using
weighted IR

 difWeiArrIR = [difWeiArrIR magDifWeiBM_RFIR];

 t = t + dt; %Increase time

63

end

%Define Earth

[xE, yE, zE] = sphere(36);

xE = xE .* Re;

yE = yE .* Re;

zE = zE .* Re;

figure

axis equal;

axis([-7e6 7e6 -7e6 7e6 -7e6 7e6]);

view(280,30);

grid on;

hold on;

surf(xE, yE, zE);

%3D Target Trajectory

title('Trajectories')

xlabel('x(m)');

ylabel('y(m)');

zlabel('z(m)');

%Plot Target Trajectory

posArrayTx = posArrBM(1,:);

posArrayTy = posArrBM(2,:);

posArrayTz = posArrBM(3,:);
plot3(posArrayTx, posArrayTy, posArrayTz, 'y-');

plot3(posLaunchFac(1), posLaunchFac(2), posLaunchFac(3), 'yo')

plot3(posRF1(1), posRF1(2), posRF1(3), 'ko');

plot3(posRF2(1), posRF2(2), posRF2(3), 'co');

plot3(posIR1(1), posIR1(2), posIR1(3), 'co');

plot3(posIR2(1), posIR2(2), posIR2(3), 'co');

64

figure %figure of true bal mis position and sensed position by RF1

plot((timeArr / 60), difArrBM_RF1);

title('True bal mis position vs. sensed by RF1');

xlabel('Flight time (min)');

ylabel('rms error (m)');

axis([0 3 0 600]);

grid

figure %figure of true bal mis position and sensed position by RF2

plot((timeArr / 60), difArrBM_RF2);

title('True bal mis position vs. sensed by RF2');

xlabel('Flight time (min)');

ylabel('rms error (m)');

axis([0 3 0 600]);

grid

%figure of true bal mis position and arithmetic mean position sensed by radar sensors

figure

plot((timeArr / 60), difAritMeanBM_RF);

title('True bal mis position vs. arithmetic mean of target sensed by RF1, RF2');

xlabel('Flight time (min)');

ylabel('rms error (m)');

axis([0 3 0 600]);

grid

%figure of true bal mis position and weighted position sensed by radar sensors

figure

plot((timeArr / 60), difWeiArrBM_RF);

title('True bal mis position vs. weighted position(RF1-RF2)');

xlabel('Flight time (min)');

ylabel('rms error (m)');

axis([0 3 0 600]);

65

grid

%figure of true bal mis position and shifted position using IR (weighted)

figure

plot((timeArr / 60), difWeiArrIR);

title('True bal mis position vs. final algorithm weighted(RF1, RF2, IR1, IR2)');

xlabel('Flight time (min)');

ylabel('rms error (m)');

axis([0 3 0 600]);

grid

%figure of infrared intersection volume and bal mis

figure

for i = 1:size(volArray,2)

 plot3(volArray(1,i), volArray(2,i), volArray(3,i));

 hold on

end

axis square

plot3(posBM(1), posBM(2), posBM(3), 'or')

disp(['Sum of errors of dif between bal mis and sensed by RF1 ='
num2str(sum(difArrBM_RF1)) ' m']);

disp(['Sum of errors of dif between bal mis and sensed by RF2 ='
num2str(sum(difArrBM_RF2)) ' m']);

disp(['Sum of errors of dif between bal mis and arithmetic mean position ='
num2str(sum(difAritMeanBM_RF)) ' m']);

disp(['Sum of errors of dif between bal mis and weighted position ='
num2str(sum(difWeiArrBM_RF)) ' m']);

disp(['Sum of errors of dif between bal mis and final algorithm (wei) ='
num2str(sum(difWeiArrIR)) ' m']);

66

%atmospheric transmittance

%gokhan humali 8/9/04

%searad used

clear;

clc;

searad_trans = [.9328 .9275 .9227 .9306 .9302 .9207 .9001 .8751 .8567 .7957 .7434
.4336 .0555 .0218 .0874 .0484 .0765 .1289 .2287 .3747 .4049 .4925 .5784 .6283
.5879 .7434 .8454 .8881 .9195 .9328 .9385 .9396 .9362 .9367 .9394 .9348 .9403
.9406 .9389 .9391 .9390 .9392 .9325 .9206 .9130 .9023 .8696 .8011 .6401 .3155
.0946 .0296 .0533 .0608 .0522 .0734 .1849 .4432 .709 .8404 .6925 .8878 .8761
.8936 .9372 .9393 .9449 .9366 .9317 .9416 .9453 .943 .9418 .9361 .9107 .876
.8297 .7833 .6852 .4998 .2034 .0073 0 0 0 0 0 0 .0007 .0289 .2039 .3526 .4673
.5374 .4545 .4079 .6907 .4365 .4958 .5504 .6695 .8613 .9296 .9184 .9147 .9113
.9310 .9311 .935 .9452 .931 .9072 .1963 0 .0615 .4598 .7967 .8593 .7222 .6097
.4793 .2297 .1051 .0122 .0001 0 0 0 .0001 0 0 .0011 .026 .1834 .4187 .7958 .9064
.9129 .9308 .9355 .9554 .9493 .9357 .9054 .8351 .334 .0032 .1797 .3284 .2486
.2486];

wavenumber = linspace(8000,500,151);

wavelength = 1 ./ wavenumber .* 1e4;

figure

semilogx(wavelength,searad_trans)
axis([1 20 0 1])

xlabel('Wavelength (micrometer)')

ylabel('Atmospheric transmittance')

67

%gokhan humali 2004

%conversion of geographic coordinates to spherical coordinates

function [thet, phi] = geo2sph(latH, latD, latM, lonH, lonD, lonM)

deg2rad = pi / 180;

latDegree = latD + latM / 60;

latRad = latDegree * deg2rad;

lonDegree = lonD + lonM / 60;

lonRad = lonDegree * deg2rad;

if latH == 'N'

 thet = pi / 2 - latRad;

elseif latH == 'S'

 thet = pi / 2 + latRad;

end

if lonH == 'E'

 phi = lonRad;

elseif lonH == 'W'

 phi = 2 * pi - lonRad;

end

%gokhan humali 2004

%conversion of spherical coordinates to cartesian coordinates

function [x, y, z] = sph2car(thet, phi, R)

x = sin(thet) * cos(phi) * R;

y = sin(thet) * sin(phi) * R;

z = cos(thet) * R;

68

%gokhan humali 2004

%excitance of the ballistic missile plume at temperature T

clear;clc;

lam=linspace(1,14,1000);

h = 6.625e-34;

c = 3e8;

k = 1.38e-23;

T = 1035;

emissivity = 0.5;

c1 = 3.7417749e4;

c2 = 1.4387e4;

gh = exp(h.*c./(lam.*k.*T));

M = c1 ./ (lam .^ 5 .* (exp(c2./(lam.*T))-1));

figure

plot(lam,M*1e4) %multiply with 1e4 to convert the result to m^-2

xlabel('Wavelength (micrometer)')

ylabel('Radiant exitance of blackbody (W/(m^2 micrometer))')

grid

figure

plot(lam,M*emissivity*1e4)
xlabel('Wavelength (micrometer)')

ylabel('Radiant exitance of graybody (W/(m^2 micrometer))')

grid

69

%gokhan humali 2004

%computes the midline of the infrared sensor's IFOV.

function errTIR = midIRline(posTar, posIR, IFOV)

flag = 1;

vecTIR = posTar - posIR; %vector from IR sat. to ballistic missile

%magnitude of the vector between IR sat. and ballistic missile

magVecTIR = sqrt(vecTIR(1) ^ 2 + vecTIR(2) ^ 2 + vecTIR(3) ^ 2);

%theta angle for the vector between IR sat. and bal. mis.

theta = atan2(vecTIR(2), vecTIR(1));

%phi angle for the vector between IR sat. and bal. mis.

phi = acos(vecTIR(3) / magVecTIR);

while flag

 ran_1 = rand - 0.5; %first random number between -0.5 to 0.5

 ran_2 = rand - 0.5; %second random number between -0.5 to 0.5

%components of the new vector between IR sat. and bal. mis. with adding random
number times IFOV

 x = magVecTIR * cos(theta + ran_1 * IFOV) * sin(phi + ran_2 * IFOV);

 y = magVecTIR * sin(theta + ran_1 * IFOV) * sin(phi + ran_2 * IFOV);

 z = magVecTIR * cos(phi + ran_2 * IFOV);

 errTIR = [x; y; z];

 magErrTIR = sqrt(errTIR(1) ^ 2 + errTIR(2) ^ 2 + errTIR(3) ^ 2);

 %check the new vector if it is really inside IFOV/2
 a = dot(errTIR, vecTIR);

 b = magErrTIR * magVecTIR;

 d = acos(a / b);

 if (d <= (IFOV / 2))

 flag = 0;

 end

end

70

%gokhan humali 2004

%conversion of topographic coordinates to cartesian coordinates [After kuzun thesis]

function [x, y, z] = top2car(az, el, latH, latD, latM, lonH, lonD, lonM)

deg2rad = pi / 180;

if latH == 'N'

 lat = (latD + latM / 60) * deg2rad;

elseif latH == 'S'

 lat = -(latD + latM / 60) * deg2rad;

end

if lonH == 'E'

 lon = (lonD + lonM / 60) * deg2rad;

elseif lonH == 'S'

 lon = -(lonD + lonM / 60) *deg2rad;

end

HA = sin(el);

EA = cos(el) * cos(az);

NA = cos(el) * sin(az);

%Rotation vector

T = [-sin(lat)*cos(lon) -sin(lon) cos(lat)*cos(lon)

 -sin(lat)*sin(lon) cos(lon) cos(lat)*sin(lon)

 cos(lat) 0 sin(lat)];

solVec = [0; 0; 0];

solVec = T * [EA; NA; HA];

x = solVec(1);

y = solVec(2);

z = solVec(3);

71

%gokhan humali 2004

%IR intersection volume

function volArr = volumeIR(posTar, positIR1, positIR2, errorTIR1, errorTIR2, IFOV_1,
IFOV_2)

magErrTIR1 = sqrt(errorTIR1(1) ^ 2 + errorTIR1(2) ^ 2 + errorTIR1(3) ^ 2);

magErrTIR2 = sqrt(errorTIR2(1) ^ 2 + errorTIR2(2) ^ 2 + errorTIR2(3) ^ 2);

volArr = [];

for i = (posTar(1) - 25):(posTar(1) + 25)

 for j = (posTar(2) - 25):(posTar(2) + 25)

 for k = (posTar(3) - 25):(posTar(3) + 25)

 tempT = [i; j; k];

 tempTIR1 = tempT - positIR1;

 tempTIR2 = tempT - positIR2;

magTempTIR1 = sqrt(tempTIR1(1) ^ 2 + tempTIR1(2) ^ 2 +
tempTIR1(3) ^ 2);

magTempTIR2 = sqrt(tempTIR2(1) ^ 2 + tempTIR2(2) ^ 2 +
tempTIR2(3) ^ 2);

 a1 = dot(tempTIR1, errorTIR1);

 b1 = magTempTIR1 * magErrTIR1;

 d1 = acos(a1 / b1);

 a2 = dot(tempTIR2, errorTIR2);

 b2 = magTempTIR2 * magErrTIR2;

 d2 = acos(a2 / b2);

 if (d1 <= (IFOV_1 / 2)) & (d2 <= (IFOV_2 / 2))

 volArr = [volArr tempT];

 end

 end

 end

end

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

LIST OF REFERENCES

1. http://www.state.gov/t/np/rls/fs/20902.htm /Accessed 09/04

2. Andrew M. Sessler, John M. Cornwall, Bob Dietz, Steve Fetter, Sherman Frankel,

Richard L. Garwin, et al., “Countermeasures: A technical evaluation of the

operational effectiveness of the planned US national missile defense system,”

Union of Concerned Scientists, MIT Security Studies Program, Cambridge,

Massachusetts, April 2000

3. Monroe Schlessinger, Infrared Technology Fundamentals, p. 33, Marcel Dekker,

New York, NY, 1995

4. R.G. Driggers, P. Cox, and T. Edwards, Introduction to Infrared and Electro-

optical Systems, p. 97, Artech House, Norwood, MA, 1999

5. Theodore A. Postol, “Science, Technology, and Attack Tactics Relevant to

National Missile Defense Systems”, pp.39-62, (unpublished), Washington, DC,

June 18, 2001

6. Filippo Neri, Introduction to Electronic Defense Systems, p206, Artech House,

Norwood, MA, 2001

7. Phillip E. Pace, Notes for EC3700 (Introduction to Joint Services Electronic

Warfare), Naval Postgraduate School, 2004 (unpublished)

8. David H. Pollock, Editor, The Infrared & Electro-Optic Systems Handbook, Vol.

7, p. 100, SPIE Optical Engineering Press, Bellingham, WA, 1996

9. K.Uzun, “Requirements and limitations of Boost Phase Ballistic Missile Intercept

Systems”, Master’s Thesis, Naval Postgraduate School, Monterey, CA, Sept 2004

10. Merrill I. Skolnik, Introduction to Radar Systems, p.223, McGraw Hill, New

York, 2001

11. David L. Hall, James Llinas, Handbook of Multisensor Data Fusion, p1-7, CRC

Press, Washington, DC, 2001

74

12. M. Kokar, K. Kim, “Review of Multisensor Data Fusion Architectures and

Techniques,” IEEE Spectrum, 1993

13. P. E. Pace, M. D. Nash, D. P. Zulaica, A. A. Di Mattesa, A. Hosmer, “Relative

Targeting Architectures for Captive-Carry HIL Missile Simulator Experiments”,

IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, July

2001

14. K. V. Ramachandra, Kalman Filtering Techniques for Radar Tracking, p. 3,

Marcel Dekker, New York, NY, 2000

75

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Dan Boger
Information Sciences Department
Monterey, California

4. Dr. Phillip E. Pace
Department of Electrical and Computer Engineering
Monterey, California

5. Dr. Murali Tummala
Department of Electrical and Computer Engineering
Monterey, California

6. 1st Lt. Gokhan Humali
Turkish Air Force
Ankara, Turkey

7. Mr. Dale S. Caffall

Missile Defense Agency
Washington, D.C.

8. Ms. Gerri Hudson

Raytheon Company
Tucson, Arizona.

9. Mr. Howard Krizek

Raytheon Company
Tucson, Arizona.

10. Mr. Lamoyne Taylor

Raytheon Company
Tucson, Arizona.

